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Abstract—Consumer drones enable high-class aerial video
photography, promise to reform the logistics industry, and are
already used for humanitarian rescue operations and during
armed conflicts. Contrasting their widespread adoption and high
popularity, the low entry barrier for air mobility—a traditionally
heavily regulated sector—poses many risks to safety, security,
and privacy. Malicious parties could, for example, (mis-)use
drones for surveillance, transportation of illegal goods, or cause
economic damage by intruding the closed airspace above air-
ports. To prevent harm, drone manufacturers employ several
countermeasures to enforce safe and secure use of drones, e. g.,
they impose software limits regarding speed and altitude, or use
geofencing to implement no-fly zones around airports or prisons.
Complementing traditional countermeasures, drones from the
market leader DJI implement a tracking protocol called DroneID,
which is designed to transmit the position of both the drone and
its operator to authorized entities such as law enforcement or
operators of critical infrastructures.

In this paper, we analyze security and privacy claims for
drones, focusing on the leading manufacturer DJI with a market
share of 94%. We first systemize the drone attack surface
and investigate an attacker capable of eavesdropping on the
drone’s over-the-air data traffic. Based on reverse engineering
of DJI firmware, we design and implement a decoder for DJI’s
proprietary tracking protocol DroneID, using only cheap COTS
hardware. We show that the transmitted data is not encrypted,
but accessible to anyone, compromising the drone operator’s
privacy. Second, we conduct a comprehensive analysis of drone
security: Using a combination of reverse engineering, a novel
fuzzing approach tailored to DJI’s communication protocol, and
hardware analysis, we uncover several critical flaws in drone
firmware that allow attackers to gain elevated privileges on two
different DJI drones and their remote control. Such root access
paves the way to disable or bypass countermeasures and abuse
drones. In total, we found 16 vulnerabilities, ranging from denial
of service to arbitrary code execution. 14 of these bugs can be
triggered remotely via the operator’s smartphone, allowing us to
crash the drone mid-flight.

I. INTRODUCTION

Civil drones are a defining element of the 21st century.
Their low-cost and high-quality image capabilities enable
innovations in aerial photography for journalism and film,
geographic mapping of inaccessible terrain and locations [64],
information gathering of disaster situations [35], and humani-
tarian rescue operations with thermal sensors [50]. Companies
such as Amazon plan to deliver packages from the air [34], and
events like the Tokyo Olympics opening ceremony featured a
drone-based light show [59].

At the same time and in stark contrast to these various
opportunities, consumer drones pose a significant threat of
(mis-)use in criminally motivated scenarios. For example,
drones can easily bypass physical boundaries such as prison
walls or national border fences [53]. Thus, they open up a new
vector for the delivery of illegal goods such as drugs [45],
[29] with high mobility and low risk of detection. Flying
within or near restricted airspace can also cause significant
economic damage. For instance, regulations require airports
to cease operations as soon as a drone sighting is reported,
causing high financial costs and potentially affecting thousands
of people [40]. To mitigate the risks of these abuse scenarios,
drone vendors commonly employ several countermeasures:
Geofencing prevents drones from entering restricted airspace,
while software limits prevent operators from going too fast or
too high. Beyond actively preventing harmful actions, drones
from market leader DJI regularly transmit their position and the
operator’s position via a proprietary protocol called DroneID,
allowing law enforcement or critical infrastructure operators
to identify and track drones as well as their pilots. While
this allows to locate and apprehend malicious drone operators
effectively, transmitting sensitive location data can be prob-
lematic, e. g., if law enforcement uses drones for surveillance
purposes. Additionally, recent European conflicts have seen
armed forces and civilians use consumer drones to track the
movement and positioning of hostile forces or guide artillery
strikes. In both cases, drone users rely on the privacy of
sensitive location data not being accessible.

Despite these potential security, safety, and privacy risks,
and the existing abuse of consumer drones, only a few sci-
entific works assess the security and privacy of civil drones.
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Nassi et al. [43] systematically analyze the academic state-
of-the-art in this regard. Various aspects such as Global
Positioning System (GPS) spoofing [1] and de-authentication
attacks [10], [49], [46] were analyzed previously. Critically,
however, system security aspects of existing drone systems
have not yet been comprehensively assessed. Most existing
research uses either low-cost or open-source drones, which are
not as widely used as commercial high-end drones. The few
works that address such widespread drones, like DJI products,
are limited to the DJI Go 4 app [63] or they perform only a
basic analysis of the Phantom 3 [65], [6] or Phantom 4 [16]
drones. To the best of our knowledge, no further attempts were
made to study the software or hardware level in detail.

In this work, we present a comprehensive analysis of
security and privacy claims of state-of-the-art consumer drones
from DJI, the market leader of consumer drones in terms of
sales [58], [60] and security measures employed [20]. We con-
sider two threat models where (i) a passive attacker eavesdrops
on traffic transmitted over-the-air and (ii) a scenario where an
active attacker has physical access to the drone or a device
connected to the drone. For the former, we especially focus
on DJI’s DroneID protocol, and its impact on the operator’s
privacy. Widespread public belief – nurtured by only recently
withdrawn vendor statements [30] – is that the transmitted
position data is encrypted and can only be decrypted and
decoded by law enforcement or operators of critical infras-
tructure. We reverse-engineered both the firmware and the
software related to the wireless physical layer to examine how
packets using DroneID are modulated and encoded. With the
insights gained from reverse engineering, we built the complete
pipeline required to receive, demodulate, and decode DroneID
packets and reveal that this protocol is not encrypted. Based
only on standard components such as a Software Defined
Radio (SDR), our findings show that the packets accurately
disclose the location of the drone and, more importantly, the
home point and the location of the pilot. We identify a way
of disabling the transmission of this data and show that it is
also possible to spoof the pilot’s position with an off-the-shelf
GPS spoofing app.

Beyond a passive attacker eavesdropping on the data trans-
mitted via a radio interface, we consider an active attacker with
physical access to the drone, remote control, or the connected
smartphone. We analyze the full system stack, including the
hardware and software of the drone itself and the remote
control. To dynamically analyze the drone’s firmware, we
design and implement a black-box fuzzer with a customized
grammar of the drone’s proprietary communication protocol
called DUML. Fuzzing a complex cyber-physical system such
as a drone is challenging because we typically do not have
access to the complete firmware and thus cannot use any
existing fuzzer that relies on instrumentation. In addition, faults
do not necessarily manifest in a complete crash, but often only
in an inconsistent state. We present a novel bug oracle that
monitors DJI’s Android app connected to the remote control
for subliminal but unexpected changes. This allows us to
effectively identify erroneous patterns and uncover faults that
lead to an inconsistent state, which conventional fuzzers cannot
detect. Using this approach, we successfully identify several
security-critical bugs that allow an attacker to gain privileged
access, a pre-condition for disabling many countermeasures, to
execute arbitrary code, or to spoof their identity by forging the

drone’s serial number. Our analysis further uncovers a safety-
critical remote attack vector, where drones can be crashed mid-
flight. Static analysis of the firmware yields further critical
bugs, which allow arbitrary command execution. Overall, we
find 16 vulnerabilities, with a severity ranging from low to
critical, in four out of five tested DJI devices.

Contributions. In summary, our main contributions are

• Security Analysis. We present a comprehensive secu-
rity analysis of market leader DJI’s consumer drones.
This analysis includes the hardware, software, and
wireless physical layer of the drone itself and the
remote control. Our analysis uncovers multiple critical
security vulnerabilities that allow for arbitrary com-
mand execution and bypassing of countermeasures, or
even remotely crashing drones mid-flight.

• DroneID. We reverse engineer both the firmware and
wireless physical layer of current DJI drones to an-
alyze DJI’s proprietary transmission protocol called
OcuSync. Based on these findings, we present a com-
bination of a receiver, demodulator, and decoder for
DJI’s DroneID packages to reveal sensitive informa-
tion, including the live positions of both the drone and
the remote pilot.

• Drone Fuzzing. We design and implement a custom
generational black-box fuzzer that combines a DJI-
specific grammar with a novel bug oracle to identify
faults in drones and their remote controls. Our fuzzer
uncovers security-critical crashes that can be used to
gain root access or crash drones in the air.

To foster future research on this topic, we open-
source our fuzzing framework and our DroneID receiver
at https://github.com/RUB-SysSec/DroneSecurity. Following a
responsible disclosure process, DJI has fixed all bugs.

II. PRIMER ON DJI DRONES

As a first step, we provide an overview of the most impor-
tant aspects of modern consumer drones, focusing specifically
on drones from the manufacturer DJI. This company is the
world’s leading manufacturer of commercial drones in 2021,
with a total market share of approximately 54 % by units (as
of late 2021) and 94% in the consumer drones segment [58].
Furthermore, DJI provides a whitepaper on their security and
safety mechanisms [20], thus establishing a solid baseline in
terms of security and safety. Given the practical importance
of DJI, in this work we focus on consumer drones from this
vendor with a weight between 200g and 1kg. In this work, we
use three different DJI drone models and their corresponding
Remote Controls (RCs) for our security analysis:

• DJI Mini 2, RC: RC231
• Mavic Air 2, RC: RC231
• Mavic 2 Pro / Zoom, RC: RC1B

Furthermore, we reproduce our findings on the latest DJI
drone, the Mavic 3 (which was unavailable during initial
analysis). The results presented in this section are based on our
analysis of several recent DJI drones and reverse engineering
of different firmware images.
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A. Communication Interfaces and Protocols

In the following, we provide an overview of a typical
drone’s interfaces and communication protocols. These aspects
are particularly interesting because they are directly exposed
to attackers.

Figure 1 provides a broad overview of the different inter-
faces of a DJI drone and how these are used to communicate
between the drone, the Remote Control (RC), and a computer.
While the drone and the RC communicate during the operation
of the drone, the computer is only used to analyze, update, or
access files on the drone or the RC.

a) USB: Both drones and RCs typically have a USB
interface, which is used for various device classes and use
cases. The intended use case is to download data, such as
media files from the internal storage or flight logs from
the flight recorder. For DJI devices, the USB interface is
also used to send DJI Universal Markup Language (DUML)
commands—a proprietary communication protocol designed
by DJI—to control the internal settings of the device or to
initiate firmware updates. In addition, a bootloader is exposed
during the device’s boot process, which can be triggered via
specific USB packets. Furthermore, on the RCs (RC231) there
are two USB interfaces, one to connect the smartphone with
the RC for access with the DJI Fly app and a second one to
charge the remote control. The charging port can also be used
to connect the remote control to a computer.

b) UART: A Universal Asynchronous Receiver-
Transmitter (UART) interface is primarily used in micro-
controllers for wired communication. Such UART interfaces
can also be found in DJI drones, e. g., on the Sparrow
S1 transceiver (called S1 System on a Chip (SoC), see
Section C2 for details). During the hardware analysis process,
we found that the interface is enabled for two seconds after
startup and displays the boot screen of the bootloader.

c) Wireless Physical Layer: Bluetooth, WiFi, and
OcuSync: The latest DJI Drones support different wireless
protocols like Bluetooth and WiFi, e. g., to transfer photos
taken by the camera of the drone to the smartphone using
the DJI Fly app. A WiFi connection is also available on older
drones like the Mavic Pro or Mavic Air, but is used for the
Command & Control (C2) link to control drones via smart-
phones. This communication link has been replaced on newer
DJI drones by the proprietary OcuSync radio protocol, which
performs significantly better and is less prone to interference.

Remote
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Fig. 1. Generic overview of the different interfaces of a DJI Mini 2 and the
corresponding remote control RC231 as an example of a typical drone. USB
ADB requires root privileges on the drone, which are disabled by default.
UART is hidden and requires reverse engineering of the hardware pins.
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Fig. 2. The structure of a DUML packet. This example shows a request for
the DJI Assistant unlock command.

d) DUML: The DJI Universal Markup Language for-
mat is a proprietary communication protocol used by DJI, for
example, to send commands and data between internal modules
and from the RC to the drone [36]. DUML is used to set and
change parameters of the drone, such as the flight parameters
for maximum altitude or different speed parameters like the
maximum ascent and descent speed. Since the parsing process
of this protocol is prone to errors, DUML is an interesting
target for further security analysis. Therefore, we provide a
detailed overview of this custom protocol below.

DJI distinguishes between two DUML protocol versions:
V1 and Logic. The Logic protocol is used for internal commu-
nication between the individual modules of the drone, while
V1 is used for communication between the computer and the
drone via USB. DJI does not publicly document the possible
commands, but many of them have been documented by the
DJI reversing community [37] We also reverse engineered the
different parts of the firmware to confirm the structure.

The structure of a DUML packet, as depicted in Figure 2,
can be divided into four parts: header, transit, command, and
payload. The header contains a magic byte set to the fixed
value of 0x55, followed by the length of the packet, the
version number, and a CRC-8 header checksum. The header
is followed by the transit data, which is used to set the
sender/receiver of the DUML command. According to previous
work [37], there are 32 known sender and receiver types (e. g.,
PC, Mobile App, Center Board, and WiFi). Besides the
source and destination, the transit part of the packet contains
a unique sequence number to maintain the order of multiple
packets.

The third part of a DUML packet is the command it-
self. Here the fields commandtype, commandset, and the
commandid are defined. Based on the commandtype, the
acknowledgment type, the packet type, and the encryption type
are set. The commandset specifies which set of commands
are used for the commandid. According to [37], there are
17 known commandsets that can be used, e. g., general,
flight controller, WiFi, or battery. We confirmed
these findings based on our reverse engineering results. Finally,
the last part of the packet is the payload and a CRC-16
checksum calculated over the entire packet. For efficiency
reasons, a custom encoding is used where the information is
tightly packed. This encoding and decoding is summarized in
Listings 14 and 15 in the appendix, respectively. Later, we
will base our dynamic security tests on the recovered DUML
format and use it to build a custom fuzzing framework (see
Section D for details).

e) DJI Fly / DJI Go 4 App: DJI provides an app for
iOS and Android to display the live video feed and additional
controls. The latest drones use the DJI Fly app, while legacy
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drones use the DJI Go 4 app. Both apps offer essentially the
same functionality, in particular, both expose the live video
feed of the drone, allow to take pictures and record videos,
change different drone settings, update the firmware, or check
the general status of the drone.

A 2020 security analysis by Synacktiv concluded that the
DJI Go 4 app contains questionable features, such as an
auto-updater that is allegedly breaking Play Store terms of
service [63]. DJI responded that their auto-updating feature
aids the integrity of no-fly zones [19]. The app has been
unlisted from the Google Play Store in 2021 without official
explanation, with the DJI website now functioning as the main
distribution channel. Installing or updating the application
requires users to accept installations from untrusted third-
parties, a feature that is disabled by default for security reasons.
In particular, this evades any security and privacy measures
enforced by the app store.

B. Drone Firmware

Depending on their complexity, the drones we analyzed use
different operating systems (OSes). For most DJI drones, the
OS is based on Android which is also used on older versions
of their remote controls (e. g., Mavic Pro RC GL200). The DJI
Mini series uses a 32-bit ARM Linux based on Buildroot [4].
For time- and performance-critical operations, real-time op-
erating systems (RTOS) are used, e. g., the flight controller
and newer RCs such as the RC231 use two RTOSes in the
transceiver to manage the Radio Frequency (RF) connection —
an application and a communication processor. The firmware
of the RTOSes in the transceiver is available as encrypted
binaries for both processors. The OSes (except for the RTOS
firmware) are based on the BusyBox software suite, which
is commonly used in embedded systems. DJI encodes its
firmware in a proprietary file format encrypted with AES and
signed with RSA. Different modules, files, and use cases, such
as firmware updates or transfers, use different encryption keys.
Some of these encryption keys have been leaked by individuals
from the DJI community to decrypt parts of the firmware; we
confirmed that these keys are valid.

C. Drone Hardware

Next, we present an overview of the typical hardware
components used in the drones we analyzed. Figure 3 shows
a general overview of the essential components of such a
drone, using the DJI Mini 2 as an example. The figure also
illustrates how the individual components are linked together
and how they communicate with each other. This overview and
the following description are transferable to other DJI drone
models that only differ in the components’ performance or
feature additional sensors.

a) Flight Controller: The flight controller is the most
critical part of a drone and must be reliable, predictable,
and deterministic under all circumstances. To ensure these
properties, the flight controller uses an RTOS. The controller
supervises the flight behavior by gathering inputs from sensors
like the Inertial Measurement Unit (IMU), compass, GPS,
or Visual Positioning System (VPS). It uses this information
to maintain a stable flight by sending instructions to the
Electronic Speed Control (ESC) controllers, which regulate

Transceiver
(DJI S1 SoC)

Smart
Battery

GPS Board

Gimbal

Camera
Board

SD-Card

ESCs + Motors

Flight Controller
(IMXRT1064)

Video encoding &
collision avoidance SoC

(Ambarella H22)

UART
(DUML)

UART
(Log)

Transceiver
(DJI S1 SoC)

WiFi / Bluetooth
(Murata)

UART
(DUML)

UART
(Log)

USB
(Video)

USB

O
cuSync

Drone (DJI Mini 2)

Remote Control (RC231)

Fig. 3. Schematic overview of a typical DJI drone and its components. This
overview shows the basic internal components of a DJI drone, here using a
DJI Mini 2 as an example.

the speed of the four motors. Furthermore, it is responsible
for approving the flight and allowing the drone to takeoff
by checking the status of ESCs, battery, and other modules.
In addition, it also checks the internal No-Fly-Zone (NFZ)
database to determine if the drone is prohibited from entering
specific areas of nearby airspace. The flight controller receives
the control commands through the transceiver, here the S1
SoC, and reacts to the user inputs received from this SoC.
Moreover, the flight controller sends the information from the
different modules and sensors to the transceiver.

b) Video encoding & collision avoidance SoC: This
SoC handles the image sensor and video encoding. It receives
the video and image data from the camera, processes it, and
forwards it to the transceiver. If additional sensors are installed
for collision avoidance, their data is also processed in this SoC.
Besides sending the video data to the transceiver, the SoC uses
USB interfaces to store the pictures or videos on the internal
storage or SD-Card. Finally, it handles the drone’s firmware
update process. This SoC uses a Linux or an Android-based
operating system for DJI drones.

c) Remote Control: The RC controls the drone and
the camera via the C2 link. The user input from the controller
and smartphone is sent to the transceiver, which modulates the
signal and transmits it via the OcuSync protocol. Furthermore,
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the RC receives the drone’s downlink data, which includes
telemetry data and the video feed, which is then passed to
the smartphone. The RC231, which also uses the S1 SoC as
transceiver, is supported by the latest DJI drones like the DJI
Mini 2, Mavic Air 2, Mavic Air 2s, and Mavic 3. These drones
use the OcuSync transmission protocol for C2 and downlink.
The OcuSync version selected depends on the actual drone
model; this can be OcuSync 2.0, 3.0, or 3+.

d) Transceiver: The transceiver combines a transmitter
and receiver for radio communication and is an essential part
of the drone. It works via a proprietary protocol or wireless
standards such as Bluetooth or WiFi. Several of the latest DJI
drones use the so-called Sparrow S1 transceiver for OcuSync
transmissions. This transceiver is a proprietary SoC based on
an ARM Cortex-M CPU and can be found in the Mini 2
and Mavic Air 2. The Mavic Air 2s and the Mavic 3 use
as transceiver the so-called P1 (Pigeon) SoC. We are focusing
on the S1 SoC in this work.

This SoC is used as a transceiver for OcuSync and contains
two RTOSes for the application processor and the communica-
tion processor. The firmware for the RTOS is called Sparrow
Firmware and can be found in firmware updates for the RC
as well as in the drone’s filesystem. The transceiver in the
drone receives telemetry data and other reports from the flight
controller and video data from the video encoding SoC. All
of this data is then RF modulated and transmitted through
the antennas. Furthermore, the transceiver receives the C2 link
from the remote controller and passes this data to the flight
controller.

e) WiFi / Bluetooth Chip: WiFi or Bluetooth chips can
also be used as a transceiver, allowing the connection to an RC
or a smartphone to control the drone. However, this setup has
the disadvantage that range and reliability are not as good as
with a proprietary radio protocol. The DJI Mini 2 and Mavic 3
have an additional WiFi and Bluetooth chip that allows users
to access media files stored on the drone easily.

f) Additional Sensors and Other Hardware: Most cur-
rent consumer drones have a high-resolution camera attached
to a gimbal. This gimbal compensates the drone’s movements
and ensures a steady image. Besides the primary camera,
drones can also use additional cameras for collision avoidance.
Other sensors can include infrared or ultrasonic sensors to
measure the drone’s altitude, or accelerometers and gyroscopic
sensors to measure acceleration and tilt, respectively.

D. Wireless Physical Layer

The current generation of DJI drones uses the proprietary
OcuSync protocol for wireless transmission in the unregulated
2.4 GHz and 5 GHz ISM bands. The drone transmits a high-
bandwidth, live video feed to the RC and subsequently to
the connected smartphone. The RC controls the drone via C2
signals. According to DJI, both uplink and downlink are AES-
256 encrypted [20]. OcuSync transmissions in the 2.4 GHz
and 5 GHz ISM bands have a range of about 15km [18].

According to the FCC ID database, the devices use 20 MHz
wide channels as the downlink (from drone to remote) and
Orthogonal Frequency Division Multiplexing (OFDM) signals.
The control uplink uses frequency hopping with narrower

signals [15]. Earlier drones used “Enhanced WiFi” that could
be sniffed using WiFi cards. In contrast, there are no openly
available OcuSync-compatible receivers that allow decoding
the signals from a drone or a RC.

III. SECURITY ANALYSIS WITHOUT PHYSICAL ACCESS

Drones are complex cyber-physical systems composed of
many modules that expose various interfaces for an attacker
as depicted in Figure 3. The interplay of components and
interfaces requires the systematization of access capabilities
to provide a comprehensive security analysis of drones. These
interfaces can be divided into wireless interfaces and those that
require physical access.

A. Threat Model 1: Passive Attacker

In the first part of our security analysis, we focus on a
scenario where the attacker has no physical access to either the
drone itself or the RC. Consequently, an adversary is restricted
to the wireless link and broadcast signals. Here, we envision
an adversary that passively listens to the wireless physical
layer to detect the whereabouts of the drone as well as the
accompanying RC (i. e., the pilot). In Section IV, we relax
this assumption and consider adversaries with physical access
to the drone and therefore a much broader capability to exploit
functionalities and access critical information.

B. Wireless Link

The wireless link is a crucial attack vector because it
controls the drone and can be accessed remotely. DJI drones
use the proprietary OcuSync protocol to control the drone
and to transmit the video stream to the remote control. DJI
itself sells Aeroscope, a device that allows law enforcement
to locate DJI drones and the pilots operating them. For this
localization, Aeroscope listens for a special signal, called
DroneID, which is broadcast by all DJI drones. Unfortunately,
neither OcuSync nor DroneID are publicly documented and
no open receivers are available. A media report [30] stated
that current-generation DroneID packets are encrypted, which
has been confirmed by DJI twice. Even though this has been
corrected in a later version of the article (also based on our
research results), it shows that the assumption that DroneIDand
the transmitted Aeroscope data is encrypted is widespread in
practice. DJI’s security whitepaper [20] does not explicitly
mention DroneID transmissions, their features, or contents. In
this section, we present the results of our reverse engineering
efforts of the DroneID broadcasts and show how we can
successfully extract sensitive information such as the location
of the drone and remote pilot. Most importantly, we debunk
the claim that the protocol is encrypted.

By scanning frequency bands, we identified radio broad-
casts that were detached from the high-bandwidth video feeds
and the uplink control channel, with very small packet sizes
and periodic occurrence. We suspected these are DroneID
broadcasts for localization and identification of drones. DJI has
maintained this feature at least since 2017. Drone regulations
that require location broadcasts through open standards (based
on WiFi or Bluetooth) are currently being drafted but have
not yet been finalized (see Section V b for a discussion).
Therefore, we assume that the latest drones use the OcuSync
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Fig. 4. A schematic overview of our DroneID receiver: Raw samples from
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formatted DroneID output (see Figure 8). We describe the different steps in
Section III.

protocol for such broadcasts. We analyze the packets to learn
(i) what data is included in current-generation DroneID and
(ii) if there are (unexpected) security features. As noted above,
the wireless protocol is undocumented and requires reverse
engineering. The analysis of OcuSync’s DroneID is the first
step towards enabling further analysis of the OcuSync protocol.

a) DroneID Receiver: We have implemented a live
receiver for DroneID, using a Software-Defined Radio (SDR)
for signal capture and a Python-based processing chain. Our
prototype implementation contains the full pipeline of signal
acquisition, demodulation, decoding, and verification via a
CRC checksum. We primarily perform a step-by-step analysis
to derive unknown parameters for a proprietary protocol from
the radio signals, which is a challenging problem in itself.

Our implementation can receive and decode packages live.
Additionally, it solves a separate challenge: Drones dynami-
cally switch between the 2.4 GHz and 5.7 GHz band; hence, we
continuously scan both bands for candidate frames and feed
these candidate frames into the demodulation and decoding
stages. Figure 4 shows the structure and components of our
receiver and the internal processing of the received data,
including frequency search, signal processing, demodulation,
and decoding. The details of the system are explained in more
detail below.

Our setup uses a USRP B200mini SDR that we connect
to a laptop. The SDR records up to 56 MHz simultaneously
in frequency ranges between 70 MHz to 6 GHz. The receiver
scans every band for 1.3 seconds at 50 MHz bandwidth,
resulting in 496 Mb batch sizes per band. Once frames are
found, we lock the band to consecutively record DroneID
frames and return to scanning only when the drone switches
the channel and we have not received new packets for several
cycles.

b) Spectrum Analysis: As noted above, the OcuSync
and DroneID specifications are not public. Based on our
analysis, it became clear that these protocols use similar
modulation techniques and parameters as LTE. We reverse-
engineered all subsequent parameters step-by-step. Figure 5
shows the spectrum of a single DroneID radio frame. One

Fig. 5. Spectrum view of a DroneID packet with highlighted Zadoff-Chu
synchronization symbols. The signal is the same for the 2.4 GHz and the
5.7 GHz band.

packet contains nine symbols, including two Zadoff-Chu (ZC)
synchronization symbols (Symbol 4 and 6). The other symbols
are OFDM data symbols with 601 sub-carriers (600 data and
1 DC), and a subcarrier spacing of 15 kHz. The carriers are
padded to the next power of two to apply the Fast Fourier
Transform (FFT) in the next step; this gives a total of 1024
sub-carriers with a total bandwidth of 15.36 MHz (including
the guard bands).

Our recordings showed that the packets are repeatedly
broadcast every 640ms. We noticed that some drones (Mavic 2
and older OcuSync drones) do not send the first symbol
(Symbol 1, Figure 5), which results in a shorter frame duration
of 576µs. The other parameters remain unchanged.

c) Demodulation: The translation of radio signals into
bits and bytes requires multiple steps: (i) synchronization
in time to find the boundaries of the OFDM symbols and
frequency synchronization to align with the OFDM subcarriers
that carry the payload, (ii) channel estimation to account
for distortions during the radio transmission, and (iii) de-
modulation of subcarriers (i. e., mapping OFDM subcarriers
to bits). This section briefly outlines the steps we took for
demodulation.

Time Synchronization via Cyclic Prefixes: Symbols
cannot be appended directly one after another, but padding
is required between them to reduce Inter-Symbol-Interference.
For DroneID, the gap between symbols is filled with a cyclic
prefix (CP): A copy of the end of each symbol is attached
in the beginning of the respective symbol. This enables us to
apply a Schmidl-Cox time synchronization: We correlate two
blocks that are shifted by one symbol length and have the
width of the cyclic prefix. The principle is shown in Figure 6.
The cyclic prefix lengths are 72 samples, except for symbols
1 and 9, which have an extended cyclic prefix of 80 samples.
The peaks in the correlation in Figure 6 show the symbol
start in the time domain. With the information about the exact
symbol start, the symbols can be transferred to the frequency
domain using the FFT: 1024 samples from the time domain
result in 1024 subcarriers in the frequency domain. After the
synchronization, the cyclic prefix is no longer required and
discarded.

Frequency Offset Correction via Zadoff-Chu Sequences:
We found that the symbols 4 and 6 always contain the ZC
sequences with roots 600 and 147. We correlate the locally-
generated ZC sequences with the actual symbol, yielding
any carrier-frequency offset, and apply a frequency shift for
correction.
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Fig. 6. Symbols contain cyclic prefixes (matching symbol start and end) that
we find by shifting a mask over the frame and calculating the correlation.
Note that the actual calculation takes place in the time domain.

Fig. 7. Subcarrier demodulation and bit assignment: Each subcarrier (i. e., a
”row” within the OFDM symbol) is QPSK-modulated and belongs to one of
four groups, visible in the IQ plot. Thereby we assign bits to the subcarriers,
yielding the bitstream payload for the OFDM symbol.

Subcarrier Demodulation and Bit Assignment: The
OFDM subcarriers are Quadrature Phase Shift Keying
(QPSK)-modulated; i. e., the carrier signals are phase-shifted
by one of four possible angles to modulate the signal’s
message in two bits. Figure 7 shows the four different phase
shifts, resulting in four clusters—if plotted as complex number
representation—and their respective bit representation. The
better the synchronization and error correction, the sharper the
grouping. The following decoding steps will show if the bit
assignment was correct.

d) Decoding: The previous steps convert the radio
signal into a bitstream, which can be decoded to retrieve the
actual DroneID payload. By analyzing the S1 firmware, we
found the data is (i) scrambled with a Gold sequence, and we
identified the seed for the underlying Linear-Feedback Shift
Register (LFSR). Also, it is (ii) encoded with a turbo-encoder
using the same permutation table for sub-block interleaving as
in the LTE specification [14], [22].

We apply the de-scrambling and turbo-decoding of the
bitstream and map the resulting data to the DroneID structure
(cf. Listing 13 in Appendix A), which we found in the firmware
of the drone via reverse engineering. The CRC checksum
included in each packet matches our calculation, showing that
we recovered the data correctly. Figure 8 shows an example
of a successfully recovered DroneID payload.

e) Performance: We examined the DroneID broadcasts
from various DJI drones such as the Mini 2, Mavic Air 2, and,
Mavic 2 Pro / Zoom; these models all use the OcuSync 2.0
protocol. We tested the receiver outdoors with drones in-flight.
We kept both drone and operator moving to generate non-
static DroneID packets. We were able to successfully decode

{ "pkt_len": 88,
"unk": 16,
"version": 2,
"sequence_number": 627,
"state_info": 8179,
"serial_number": "spoofed",
"lon": "7.2679607",
"lat": "51.4468610",
"altitude": 40.54,
"height": 3.05,
"v_north": 29,
"v_east": 84,

"v_up": 0,
"d_1_angle": 1.27,
"gps_time": 1650894651295,
"app_lat": "43.2682071",
"app_lon": "6.6401597",
"lon_home": "7.2679321",
"lat_home": "51.4468438",
"device_type": "Mini 2",
"uuid_len": 0,
"uuid": "",
"crc-packet": "22f5",
"crc-calculated": "22f5" }

Fig. 8. A decoded DroneID packet with the manipulated serial number
spoofed and a spoofed operator location (app_lat, app_lon).

broadcasts from all these models. The decoded broadcasts
show that all location information is accurate and updated
within each packet, allowing a full flight path reconstruction.
Only a single DroneID packet is required to locate both the
drone and the pilot. The more packets we can decode, the
higher our flight path resolution is. We calculate the per-
centage of detected frames, decoding attempts, and successful
decodes—with matching CRC—and compare it to the expected
number (based on the DroneID interval of 640 ms). Our initial
measurements show that for all tested drones, about 37% of
the expected packets are correctly decoded – meaning that we
receive location updates every two seconds. That shows that
even our prototype implementation of a receiver is an efficient
method for live recording of a full flight path.

f) Results: Our receiver range is limited to a range
of roughly 10 m and sensitive to interference that occurs,
e. g., due to neighboring WiFi stations. This effect can be
attributed to our receiver chain focusing on reverse-engineering
the signal, while not being optimized for performance or high
range. Our tests show that—within the receiver range—we
can successfully and reliably receive, demodulate, and decode
DJI’s proprietary DroneID transmission. Most importantly, we
find that the signals are not encrypted. Our observations show
that DroneID accurately discloses the locations of the drone,
the home point, and the remote pilot.

The received DroneID packets showed that our assump-
tions about the structure of the packets on the wireless physical
layer were correct and matched the structures we recovered
from the drone’s firmware. Furthermore, the decoded packets
confirmed that we successfully modified the drone’s serial
number (see Section IV D e), which allows a malicious user
to obfuscate their identity. Figure 8 shows an example of the
full DroneID information.

Now that we can observe and decode DroneID packets—
which was previously not possible without access to DJI’s
Aeroscope receiver—we want to test if it is possible to disable
DroneID or fake the transmitted position. We conduct two
experiments: i) Spoofing the pilot’s location, and ii) disabling
DroneID through undocumented DUML commands.

For i) spoofing the operator’s location, we used a non-
rooted Android phone and the app called “Fake GPS” from
the Google Playstore [33]. After the fake position was set
in the spoofing app, we switched to the DJI app, started the
drone, and turned on the receiver. The receiver starts to find and
decode valid DroneID packets where the drone’s position is set
correctly, but the transmitted coordinates of the remote pilot are
set to the spoofed position. The app allows the simulation of
random movements, which we could also verify in the received
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DroneID packets. The distance between the drone, its home
point, and the pilot’s faked GPS position did not play a role.
Thus, we conclude that no check is performed regarding the
consistency of the coordinates, and the location of the remote
pilot can be successfully spoofed.

Further, during our security analysis, we found a publicly
unknown DUML command that seemed to allow configuring
and disabling the different DroneID values. According to DJI,
this command is part of an internal API that should not be
available externally. This has been fixed in the latest model.
Using our live DroneID decoder, we could confirm that this
command does not disable the DroneID packets but replaces
the respective values within the packet with the value ‘fake’.

In summary, we reverse-engineered the proprietary DJI
DroneID broadcasts, confirmed that they are unencrypted, and
discussed how common off-the-shelf tools suffice to decode
the transmitted information, including the location of both the
drone and the remote pilot. This contradicts the public percep-
tion, which assumes that such privacy-relevant information are
transmitted in a protected manner [30], making it a privacy-
risk for people using the drone without being aware of this
behavior.

When studying whether the location data is protected
against spoofing attempts, we found that no such protections
are in place.

IV. SECURITY ANALYSIS WITH PHYSICAL ACCESS

So far, we have focused solely on a passive attacker
monitoring the wireless physical layer. In this section, we
assume an active attacker.

A. Threat Model 2: Active Attacker

In the following, we consider scenarios where an attacker
has physical access to the drone, its RC, and the smartphone
connected to the RC. We assume the goal of this attacker is
to deny its service or to bypass the countermeasures enforced
by DJI on the drone. For example, they may desire to crash
the drone during flight, disable DroneID, geofencing, or other
software limits, such that they can fly over restricted areas. A
first step towards achieving this goal is the ability to extract the
firmware running on the drones and then to elevate privileges.

We stress that despite assuming physical access to the
drone, this is mainly for the analysis process itself. As we
show, once interesting commands are uncovered, almost all of
them can be sent to the drone over the air. In other words, we
also analyze a variant of this active attacker model: an attacker
that has only compromised the user’s smartphone connected
to the RC (which is normal during flight) but has no physical
access to the drone itself.

B. Overview

Because drones are complex cyber-physical systems with
multiple interfaces, different firmware files, and diverse archi-
tectures, several types of analysis methods need to be applied
to them. Nassi et al. [43] identified six unique targets that
can be attacked: Drone hardware, drone chassis and package,
ground control station, radio communication channel, pilot,
and cloud services. Nassi et al. use the term “drone hardware”

to refer to the drone itself, its components, and the firmware.
In this work, we distinguish between hardware and firmware,
and we analyze both in more detail.

Before we can use automated dynamic analysis methods
such as fuzzing, which have proved invaluable towards effec-
tively finding bugs in software [24] and firmware [23], [55],
we must understand the intricacies of the target under test. For
example, we need to identify communication interfaces and
protocols. To do so, we manually conduct a static analysis
of the firmware and analyze the drone’s hardware. Beyond
yielding essential information for our automated dynamic
analysis, we uncover several critical security vulnerabilities
this way. Building on the identified DUML communication
protocol, we then devise a fuzzer to automatically search for
further vulnerabilities and uncover a significant number of
them. All findings have been responsibly disclosed to and
acknowledged by the vendor DJI.

For our detailed analysis, we investigate the following DJI
hardware devices: DJI Mini 2, the Mavic Air 2, and the
Mavic 2 Pro / Zoom. Furthermore, we studied the remote
control RC231 / RC-N1 (used by the latest DJI drones,
including DJI Mini 2, Mavic Air 2, and Mavic 3) and replicated
found bugs on the latest DJI drone, the Mavic 3.

C. Initial Manual Analysis and Interactive Access

Before we can mount any automated analyses techniques,
such as fuzzing, we need to understand our target.

1) Manual Static Analysis: We apply manual static analysis
to different parts of the drone firmware, such as the flight
controller, and uncover crucial information on various features
and drone functionality. For our analysis, we use standard
tools, in particular Ghidra [44], Binwalk [52], a hex editor,
and the dji-firmware-tools [38]. Most importantly, our manual
static analysis reveals information on the structure of DUML,
laying the foundation of our dynamic analysis described in the
subsequent section. Beyond providing essential information for
the understanding and analysis of drones, our manual static
analysis unveils a vulnerability that allows us to bypass DJI’s
firmware signing and gain a privileged shell on the device.

a) S1 SoC Firmware Signature Verification Bypass:
The firmware of the S1 SoC can be found on the drone as
sparrow_firmware and in firmware updates, which can be
found online; it consists of different binary files. Part of this
firmware package are so-called “SDRH” configuration files.
These files are by design neither signed nor encrypted, and our
manual static analysis of the bootloader reveals that these files
specify memory addresses and their values. We assume that
DJI uses them to install patches in the transceiver firmware
without having to reflash the entire firmware. However, DJI
does not disclose any details nor mentions these files in the
security whitepaper [20]. The bootloader reads these files and
patches the defined memory addresses of the RTOS’s RAM
with the specified values. Using hand-crafted SDRH files
allows us to patch the firmware during boot, which occurs
after the verification of the firmware signature. This approach
completely bypasses the firmware signing process and enables
an attacker, who is able to provide crafted SDRH files, to make
arbitrary changes to firmware code.
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TABLE I. DRONES AFFECTED BY SIGNATURE BYPASS AND
ARBITRARY CODE EXECUTION FOUND BY MANUAL STATIC ANALYSIS

Drone Firmwarea Sig. Bypass Code Exec
Drone RC

Mavic 2 Pro 01.00.0770 ✗ ✗ ✗
Mavic 3 01.00.0600 ✗ ✓ ✓

Mavic Air 2 01.01.0920 (✓)b ✓ ✗
DJI Mini 2 01.05.0000 ✓ ✓ ✓

RC231 / RC-N1 04.11.0034 ✓ ✓

a We verified the bugs on the latest firmware version available during writing
b We could not verify this as we have no root access on this model. However, the

underlying vulnerable hardware is the same (S1 SoC) as in the DJI Mini 2.

Table I lists drones and RCs affected by this signature
bypass (column Sig. Bypass). The Mavic 3 and Mavic 2 Pro
are not affected as they use a different transceiver than the
vulnerable S1. Following our responsible disclosure process,
DJI has assigned this vulnerability the severity critical.

b) SDRH File Delivery via Fastboot: In search of a de-
livery mechanism for SDRH files to the drone, we investigate
different binaries of the drone. We discover that the firmware
is flashed to the RAM of the SoC via a fastboot-like system.
This requires the bootloader to be in the correct state to accept
these fastboot commands. By reverse engineering the system
initialization binaries from the drone’s filesystem, we find that
the bootloader of the transceiver can be triggered by sending
different correctly-formatted packets. Sending such packets to
the RC during boot via USB enables the fastboot mode. By
first unlocking the fastboot mode, we can use it to upload
(signed) transceiver firmware files alongside (unsigned) SDRH
files. This allows an attacker to include a malicious SDRH file
alongside original firmware files and divert the control flow
of the transceiver firmware. Uploading these SDHR files does
not require authorization but only physical access to the drone
or RC.

c) Backdooring the Sparrow Transceiver Firmware:
In the following step, we analyze the Sparrow transceiver
firmware and discover an UART interface. The transceiver
firmware exposes a shell via this interface. However, we
find that this shell is closed on production drones. Hardware
indicates its production state to the firmware via what likely
is a fuse bit. We locate the code in the drone firmware that
checks this bit. By uploading a custom SDRH file that patches
firmware code to disable this check, we re-enable the UART
shell in the firmware logic.

2) Hardware Analysis: To match the findings from our
manual static analysis, we inspect the drone hardware for
communication interfaces, including the previously mentioned
UART interface. Our goal is to verify our software finding
on the hardware level and obtain an interactive shell on
the transceiver firmware. We use a custom PCB workstation
for our hardware analysis (cf. Figure 11) that allows us to
probe different connectors. We use a logic analyzer and an
oscilloscope to identify the UART interface exposed in the
firmware.

Since the sparrow firmware is shared by the latest DJI
drones like the DJI Mini 2, the Mavic Air 2, and also their re-
mote controls, we choose these devices as our target. Here, the
hardware analysis of the RC proved to be the most accessible

and could be tested even while the device was switched on.
In our investigation of the RC231 remote controller hardware,
we find the UART port used by the transceiver firmware to be
active for the first two seconds after turning on the device.

Using our previous findings from the manual static anal-
ysis, i. e., the patching of firmware files, we caused the
transceiver firmware to keep the UART connection open indefi-
nitely. This allows us to connect to the transceiver UART shell.
On this shell we identified commands to perform arbitrary
memory reads, writes, and a command to spawn a shell,
granting us elevated privileges – the prerequisite towards
disabling countermeasures and software-enforced limits.

D. Dynamic Analysis – Fuzzing

Given the understanding and insight from the previous
manual static analysis, we can now set up an automated ap-
proach to uncover bugs. One of the most effective techniques in
effectively uncovering bugs is fuzzing, an automated approach
to identify software faults by providing the tested target with
(potentially invalid) inputs. Its great success has spurred many
different research directions to improve all aspects of fuzzing.
One of the most important innovations was the introduction
of coverage feedback [68], where the target is instrumented to
report which code was exercised by a particular input. This
allows the fuzzer to observe how individual inputs influence
the control flow and thus guide the fuzzing process. Modern
fuzzers usually rely on instrumentation injected during the
compilation phase, thereby requiring access to source code.
If source code is not available, fuzzers can instrument the
binary executable by using Dynamic Binary Instrumentation
(DBI) [27], [28], binary rewriting [17], [41], or hardware
features such as Intel PT [62], [56], [2]. However, they either
require specific hardware, e. g., Intel processors, or make as-
sumptions about the execution environment, e. g., by relying on
defined interfaces provided by the OS. Unfortunately, firmware
running on embedded devices usually does not expose such an
interface. For fuzzing such firmware blobs (which typically re-
quire specific hardware configurations), state-of-the-art fuzzing
relies on re-hosting [23], [55], i. e., (partial) emulation of the
firmware’s environment, since fuzzing on the actual hardware
is often complex to set up, provides insufficient feedback, and
does not scale well. Still, it is mandatory to have access to the
firmware.

a) Drone Fuzzer Design: While fuzz testing of a given
drone seems like a natural approach to analyzing its security,
we face the aforementioned obstacle: We have neither access to
the source code nor to the complete firmware. Consequently,
concurrent fuzzing approaches do not apply to DJI drones:
We must fuzz using the actual hardware and have no access
to coverage information.

As a suitable fuzz target, we identify the DUML protocol,
which is used to enable configuration of the entire drone.
Moreover, the protocol is used by all drone components
for internal communication, and—by the means of the USB
interface—readily available to adversaries with physical ac-
cess. Due to its nature of gluing different components together,
its deep embedding in the core of the drone, and its resulting
high complexity, this protocol represents an attractive target
for potential attacks: A vulnerability in this system provides an
attacker with a powerful primitive to exploit the whole drone.
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DUML Protocol. Based on our analysis of DUML (Sec-
tion II A d), we designed a generational black-box fuzzer
that uses a custom grammar, i. e., a fuzzer that knows the
specification for which it generates inputs but is not guided by
coverage. As we do not have access to source code, complete
firmware, or an emulator capable of mimicking DJI-specific
hardware, we need to perform fuzzing on the drone itself. Since
the DJI drones and remote controls provide a USB interface
where communication via the DUML protocol is possible, we
choose that interface for our fuzzer and observe its behavior.
As we have no coverage feedback, our fuzzer works in a black-
box scenario, where we can only observe the drone’s behavior
from the outside. More precisely, we can identify whether
the drone crashes, which resets the connection. To improve
detection of bugs not resulting in a crash, we propose a novel
bug oracle based on differences in the smartphone app’s UI,
which is connected to the RC and serves as a screen for drone
configuration, sensor readings, and camera feed. For example,
when the fuzzer changes the serial number, our oracle can
automatically flag this behavior.

Communicating via DUML requires us to adhere to the
DUML protocol. Fuzzing input not heeding the specification
is likely rejected during early parsing without testing actual
program logic. Thus, we design our fuzzer as a grammar
fuzzer, which is aware of the underlying protocol specification.
Recall that each DUML command (see Section II A d) consists
of the fields, src, dest, cmdType, cmdSet, and cmdID — all
these fields are represented by one byte each. One possibility
for a fuzzer is to iterate over all 256 values for each byte,
which would take too long and test many unnecessary and non-
existent commands. To avoid this, we narrow down the possi-
ble values for these fields to the already known sources, desti-
nations, and command sets. This allows us to test the remaining
commands exhaustively in a deterministic way: We generate all
possible DUML commands from our set of commands and test
all 256 values for the field commandid. Only the command’s
payload may consist of arbitrary bytes, limited only by the
length of the DUML packet. We generate (and record to
allow deterministically replaying tested commands) a random
payload for this field. Before sending the packet, we calculate
the correct checksum for the packet such that the program logic
beyond the checksum parsing is tested. With this approach,
we can identify any DUML command that causes the drone to
crash, disconnect, or otherwise physically malfunction. Note
that not all errors manifest in crashes or physically observable
malfunctioning. Instead, some commands may cause internal
errors or corrupt other data on the device.

UI Oracle. To overcome this limitation, we introduce a
more precise bug oracle: the UI oracle. DJI drones are closely
interconnected with a smartphone, which is connected to the
remote control. The smartphone is used to show the camera
feed of the drone and allows the user to inspect values, such as
sensor readings, or change settings (cf. Section II A e). In the
spirit of widely deployed test strategies, e. g., as implemented
by frameworks such as selenium, we can automatically
navigate the user interface of the drone during a fuzzing
campaign to identify subliminally diverging but non-crashing
behavior. For example, we can detect when the fuzzer changes
settings or triggers parser errors, which are reported in the UI
as warning messages.

Fuzzer UI Oracle

OcuSync

ADB-WiFi

USB

USB

Crash/Error

Command
Ê

Ë

Ì

Í

Fig. 9. Overview of the fuzzer and its components. The fuzzer sends multiple
commands to the drone ➊, which processes them and synchronizes itself with
the RC ➋ for the sake of displaying, e. g., status information. During fuzzing,
the drone is monitored for crashes ➌ or changes in the UI ➍. If a crash or UI
change was found, we use Algorithm 1 to identify the offending command.

Input Blocks. As communication (request-response) with
the drone is slow, we send fuzzing inputs, i. e., commands,
without waiting for a response. Compared to a regular fuzzing
iteration, a UI oracle cycle (walking the UI and identifying
non-crashing errors) is slow. Thus, we opt for reducing the
number of queries to the UI oracle to a minimum. Therefore,
instead of considering inputs on an individual basis, the fuzzer
splits the input space of all possible commands into input
blocks, where each input block contains 130, 000 commands.

Fuzzing Loop. The fuzzer then sends these inputs one-
by-one over the USB serial device to the fuzz target (➊ in
Figure 9). The drone processes each command and synchro-
nizes with the RC (➋); for example, it updates status data. If
the fuzzer observes the drone’s firmware crashing (➌), we can
not associate this crash with the last command as we do not
wait for the response to each command; instead, we re-test the
last 5, 000 commands to identify the offending command.

To optimize this process, we perform a binary-search algo-
rithm as outlined in Algorithm 1. Given a group of commands
C, we successively split the commands into two equally sized
groups CA and CB . We execute all commands from the first
group and verify whether the group contains the crashing
command. If it does, we repeat this process for the first group.
If it does not, we discard this group and continue with the
second group. This is continued until only one command—
the trigger command—is left and returned. This way, we can
identify the command causing the crash in log(n) steps.

If no crash is observed and all commands in an input block
have been sent, we still have to check for unexpected behavior.
For this, the fuzzer queries the UI oracle for deviations (➍). In
case the UI oracle finds a deviation, we, again, cannot directly
associate this finding with a particular command sent. Instead,
we need to re-test the last input block using Algorithm 1;
instead of checking for crashes, we query the UI oracle and
check whether the UI deviation can be observed.

In summary, depending on the identified fault, we either use
the traditional crash oracle to verify if a crash has occurred or
the UI oracle to verify whether a deviation within the UI can
be observed.
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Algorithm 1: FindOffendingCmd
1 Input: Set of commands C
2 Result: Error causing command c

3 # Exit when C contains only one command
4 if |C| == 1 then
5 Execute(c := C[0])
6 if Oracle() == “error observed” then
7 return c
8 else
9 return ⊥

10 # Split commands into equal-sized subsets
11 CA ∪ CB := C with |CA| − |CB | ≤ 1

12 # Execute all commands in CA

13 forall c ∈ CA do
14 Execute(c)

15 # Continue with subset CA or CB

16 if Oracle() == “error observed” then
17 return FindOffendingCmd(CA)
18 else
19 return FindOffendingCmd(CB)

b) Implementation: The fuzzer and UI oracle are im-
plemented in ∼ 4, 000 lines of Python code. Our fuzzer
features two modus operandi: It can either fuzz the drone via its
serial connection or over-the-air while connected to the serial
interface of the RC. The latter allows us to identify crashes
that can be triggered remotely. When fuzzing over-the-air, the
fuzzer checks periodically if the drone is still alive, using a
specific command with a known return value. Additionally, our
fuzzer checks if there are any Android Debug Bridge (ADB)
devices except the Android phone that is used for the UI oracle.
Any other device is a strong indicator that the ADB service on
the drone has been started by one of the commands the fuzzer
sent; an available ADB service grants root access to the drone.

Our UI oracle uses Android-internal tools such as ADB
and uiautomator to interact with the DJI app in an au-
tomatic fashion to determine whether the app’s state and the
data reported in the app’s interface match the expectations;
deviations indicate that the fuzzer managed to identify an
interesting command. We designed the UI oracle such that
all values to be checked are defined in advance. This prevents
regularly changing values, such as the battery level, leading to
false positives.

c) Experiment Setup: We tested our fuzzer with three
different DJI drones and one remote control, which is used by
the latest DJI drones:

• Mavic Air 2, firmware: 01.01.0610
• DJI Mini 2, firmware: 01.03.0000
• Mavic 2 Pro, firmware: 01.00.0770
• RC231 (RC) + Mavic Air 2, firmware: 01.01.0610

The host computer running the fuzzer must be in the same
WiFi network as the Android phone, and the drone must be
connected to that computer. We used the smartphone’s WiFi
hotspot for our test. On the first start, the fuzzer needs to
initialize the smartphone, start the ADB server, and configure
the ADB WiFi connection. To use the phone with the app as
a UI oracle, the phone needs to be connected to the RC, and
the connection between RC and drone (OcuSync) needs to be

TouchEngine
10 min

UI Cycle
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UI Wait,
Drone Initialization,

and Reboot
40 min

Oracle Search
9 min

Crash Search
47 min

Drone Reboot
4 min

UI Oracle
1 h 30 min

Error Search
60 min

Fuzzing
6 h 6 min

8 h 36 min

Fig. 10. Distribution of time spent by the fuzzer during fuzzing of the Mavic
Air 2 drone.

established. We use a rooted OnePlus 8 Android phone with
Android 11 running the DJI Fly app (v1.6.6), which is used
by both Mavic Air 2 and DJI Mini 2.

We run four independent fuzzing campaigns:

1) Mavic Air 2 + connected RC231 with UI orcale
2) DJI Mini 2 + connected RC231 with UI oracle
3) Mavic 2 Pro without UI oracle
4) RC231 + Mavic Air 2 in a reverse manner, where the

RC is fuzzed and the drone is connected via OcuSync

We test the Mavic Air 2 and DJI Mini 2 drones using our UI
oracle. As the Mavic 2 Pro uses a different legacy app, we
currently can not use our UI oracle there, as it is specifically
tailored to the modern DJI app. To reduce engineering burden,
we refrain from adapting the oracle to the old application,
which is deprecated. The fourth fuzzing campaign investigates
whether fuzzing the drone over-the-air via the RC is feasible.

It is also possible that the controller loses the drone’s
signal because an invalid state is reached or the transceiver
of the drone crashes. Such a state, which continues to accept
commands on the serial interface but without a connection to
the controller, can only be detected when the UI oracle checks
the app. If the UI oracle detects that no drone is connected,
our fuzzer attempts to reboot the fuzzing target. Finally, the UI
oracle itself also has limitations and requirements: We need to
define all interesting values that should be checked during the
fuzzing campaign. We need to further account for common,
non-critical error messages, such as those that occur when the
GPS signal is weak.

d) Results: We implemented the proposed approach,
which allows us to systematically test different DJI devices,
i. e., both drones and RCs, via the USB interface for potential
vulnerabilities. Noteworthy, our approach works on all current
DJI drones and RCs. We test roughly 7.8 million commands,
which are generated by enumerating all commands as de-
scribed above. On average, we can test 400 commands per
second if the drone itself is fuzzed, resulting in a raw fuzzing
time of roughly 5.5 hours if we do not account for crashes
or UI cycles. However, each time the drone crashes, this time
is prolonged because the drone must be restarted first. Also,
the UI oracle interruptions (and potentially searching for the
command that caused an observed bug) take additional time.
In practice, we found that an entire fuzzing run takes around 9
hours to complete. In Figure 10, we outline the time spent by
the fuzzer on the individual steps during fuzzing the Mavic
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TABLE II. DEDUPLICATED FINDINGS IDENTIFIED DURING FUZZING

ID Oracle Component Observable Behavior Classificationa Severitya Remoteb Vulnerable Devices

#1 ADB check dji_sys binary ADB started (root access) arbitrary code exec mid ✗ Mini 2
#2 crash flight controller critical error (drone reboot) buffer overflow mid ✓ Mavic Air 2
#3 crash flight controller critical error (drone reboot) buffer overflow mid ✓ Mavic Air 2
#4 crash flight controller critical error (drone reboot) buffer overflow mid ✓ Mavic Air 2
#5 crash flight controller critical error (drone reboot) buffer overflow mid ✓ Mavic Air 2
#6 crash flight controller critical error (drone reboot) buffer overflow mid ✓ Mavic Air 2
#7 crash flight controller critical error (drone reboot) denial of service mid ✓ Mini 2
#8 crash flight controller critical error (drone reboot) denial of service mid ✓ Mini 2
#9 crash unknownc critical error (drone reboot) denial of service mid ✓ Mini 2

#10 crash unknownc critical error (drone reboot) denial of service mid ✓ Mini 2
#11 crash unknownc critical error (drone reboot) denial of service low ✓ Mini 2
#12 crash unknownc critical error (drone reboot) denial of service low ✓ Mini 2
#13 crash flight controller critical error (drone reboot) denial of service low ✓ Mavic Air 2
#14 UI change WiFi chip change SSID arbitrary code exec mid ✓ Mini 2, Mavic 3
#15 UI change flight controller change serial number identity spoofing mid ✓ Mini 2
#16 UI change flight controller change drone named — — ✓ Mavic Air 2, Mini 2

a as assigned by DJI during the responsible disclosure process
b attack can be carried out over-the-air with the RC functioning as relay
c component is undocumented or finding is not directly associated with a specific component
d benign finding that does not appear to be exploitable

Air 2 drone. The UI oracle takes about 25% of the total
runtime. Interestingly, only about half of this time is spent
in the actual UI cycle (i. e., inspecting values or navigating
to UI fields), resetting the app, and checking if the phone is
properly connected (TouchEngine). The other half is spent on
rebooting the drone and waiting for initialization to happen.
In general, searching for a command causing a UI deviation
is more costly than searching a command leading to a crash,
as the drone and app have to be restarted multiple times and
the UI must be searched for the deviation.

For our fuzzing run 4), where we fuzzed the RC231 instead
of the drone, we received a much lower execution rate with
around 21 commands per second. With such an execution
speed, the fuzzing run would take around 104 hours to
complete. Therefore, we reduced the commands for the fuzzer
to the sources, destinations, and command sets that proved
bug-ridden during the other fuzzing campaigns, limiting the
number of tested commands to 1, 073, 111. While this fuzzing
run is incomplete, it serves as a proof of concept that the
execution of the commands is also possible over-the-air as the
RC relays commands. When issuing a command that causes a
segmentation fault within the flight controller, an attacker can
crash the drone, which means that it falls to the ground during
flight.

Overall, we found 15 software faults (after manual dedu-
plication) that lead to a (software) crash or other kinds of
unexpected behavior. A detailed summary is listed in Table II,
including the classification and severity assigned by DJI during
the responsible disclosure process. Interestingly, most of the
crashes occur within the flight controller, which is critical with
respect to the drone’s flight operation. Beyond the ability to
crash the drone, our fuzzer uncovers a way to modify the
presumably immutable serial number (bug #15), an arbitrary
code execution (bug #14), and a backdoor launching an ADB
service with root privileges (bug #1). The first two bugs (#14
and #15) can only be uncovered using our UI oracle as they
do not cause an imminent crash. This is also the case for
#16, where the fuzzer changes the drone name. However, this

information is not considered immutable by DJI, and no other
harmful behavior is apparent from such a change, making it
a benign finding. Bug #1 is special in the fact that it requires
the fuzzer to check for active ADB services after processing
an input block. As this requires physical access, it is also the
only finding that can not be exploited remotely.

For all other findings, we can issue the associated com-
mands on the RC, which are then transmitted to the drone via
the wireless protocol OcuSync. This is possible since DUML
acts as a bus protocol interconnecting all components of a
DJI drone. Consequently, this allows us to send commands
to the drone without being physically connected. This has
several implications and opens up new attack vectors: Bugs
found during fuzzing via USB, e. g., a command that crashes
the firmware of the drone, can be issued remotely by sending
it to the RC. Previously harmless bugs simply crashing the
drones’ firmware when directly connected to the drone on the
ground now have significantly worse consequences if triggered
mid-flight remotely, leading to at least a Denial of Service
(DoS) and possibly damaging or destroying the drone. As DJI
classified some of these bugs as buffer overflow, they may
potentially be exploitable. The only pre-requisite for this is
that the attacker has access to the RC via a device under their
control. Notably, while our fuzzing happened over the RC’s
communication port, DUML messages can also be sent via the
USB port that the pilot’s smartphone is connected to during
regular flight operation. Here, the pilot’s Android smartphone
is connected to the USB-C port at the top of the RC231
and, using the Android Open Accessory (AOA) protocol, acts
as a USB accessory while the RC is the USB host. This
is normal behavior that allows the DJI app to display flight
status information; at the same time, however, this enables
an attacker who has compromised the user’s smartphone to
control or crash the drone. Since DJI distributes their app only
via the official DJI website but not the Google Play Store,
users need to override Google’s security settings and allow app
installations from other sources than the Google Play Store,
thereby increasing the attack surface of their devices.
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e) Case Studies: We now highlight three exemplary
findings to show how a crash or a change in the drone’s internal
values triggered by the fuzzer can result in security-relevant
problems.

(1) Arbitrary Command Execution (#14). We first dis-
cuss a bug that, at first glance, seems harmless, but upon
further analysis, turns out to be a fully-fledged OS command
injection vulnerability (CWE-78 [39]) that grants an attacker
elevated privileges on the drone. This was found by using
the UI oracle that reported a deviation in the app’s user
interface: The SSID name of the WiFi, which is used to
transfer videos and photos between drone and smartphone, was
replaced with random bytes. This implies that the fuzzer found
a command that allowed it to replace the SSID name with
a user-controlled input. Using our aforementioned approach,
the fuzzer identified the specific DUML command responsible
for this action in an automated way. Subsequent manual root-
cause analysis revealed that the drone processes this string
in multiple functions. Since the location where this string is
placed within a shell command is not properly sanitized, an
attacker can inject arbitrary shell commands. One caveat is that
the vulnerable function contains a length check, such that the
injected command’s length is limited. To overcome this limita-
tion, an attacker can simply create an exploit script containing
their desired commands and transfer this script chunkwise
to the drone. Once transferred, the attacker marks the script
as executable, granting them an arbitrary command execution
vulnerability without length restrictions. DJI has acknowledged
this bug as an arbitrary code execution vulnerability. Table I
shows the affected devices (column Code Exec).

(2) Arbitrary Serial Number (#15). DJI devices have
various serial numbers for the different hardware modules such
as the camera, battery, or flight controller. The serial number
of the flight controller is used to authenticate and identify the
aircraft. The security whitepaper of DJI states that this serial
number must be unique, immutable, and should be stored in a
secure storage [20]. While fuzzing the DJI Mini 2 drone, the UI
oracle discovered that the fuzzer managed to change the serial
number of the flight controller (cf. Figure 12 in Appendix A).
An attacker can abuse this to spoof their identity, as this serial
number is also the one that is transmitted in DroneID.

(3) Unlocking ADB Root shell (#1). While fuzzing the DJI
Mini 2, the fuzzer’s periodical ADB check was triggered, and
the error search by our algorithm reported a command that
starts an ADB root shell on the drone. Further investigation
reveals that actually two commands are needed: the so-called
‘DJI Assistant Unlock command’ followed by the command
found by the fuzzer. The fuzzer always sends the former
command to unlock full DUML communication.

Manually analyzing the bug, we find it is a logical flaw
in the challenge-and-response-like system used to activate a
DJI debugging feature in the dji_sys binary. The flight
controller, which is responsible for validating the challenge,
seems to accept any value, thus always unlocking this debug-
ging mode.

f) Roadblocks and Limitations of Fuzzing: Fuzzing
embedded devices involves various roadblocks and limitations.
One limitation is running out of battery if the device cannot
be supplied with power during the fuzzing campaign. This

leads to numerous interruptions for replacing and charging
the batteries and limits the automation of the fuzzing process.
Since the devices may reach invalid states triggered by the
fuzzing inputs, the drone or the remote controller firmware
can brick and no longer respond to the fuzzer. In such a state,
the fuzzer assumes a crash and waits until the device returns
online, which may never happen. If such a software brick
occurs and the device cannot be reset by, e. g., removing the
battery, we must flash the firmware to “un-brick” the drone.
This happened once during our initial implementation of the
fuzzer.

V. DISCUSSION AND LESSONS LEARNED

In the previous sections, we have examined the security
and privacy risks associated with consumer drones. We fo-
cused on drones from DJI, as this company is the leading
drone manufacturer. In addition, DJI’s whitepaper on security
establishes a solid foundation. In the following, we discuss our
main findings and elaborate on their implications.

a) Current State of Drone Security: We found that the
deployed hardening mechanisms make analysis of the drone
more difficult, but not impossible. With static analysis, we were
able to uncover bugs that led to the execution of arbitrary code
on the S1 SoC via specifically crafted configuration files. The
bugs could be observed for both the drone and RC. Using our
DUML fuzzer, we found additional vulnerabilities compromis-
ing the device security for various drones. More concerning,
we found safety-critical faults and managed to crash the drone
mid-flight when fuzzing the RC. Furthermore, our security
assessment reveals that we can flash arbitrary firmware to
the transceiver, which implies that the secure updates using
signed and encrypted firmware are not implemented correctly.
We recommend that vendors take our findings into account
and perform additional testing, e. g., in the form of fuzzing,
to reduce the number of (exploitable) bugs in their code. We
plan to collaborate with DJI to improve security and safety
properties of the studied drones.

b) EU and US Regulations for Drone Identification:
Regulatory bodies consider identification and localization as a
safety feature for consumer drones that outweighs the potential
privacy risks for remote pilots. Two compatible standards were
in draft status during our analysis: EN 4709 (EU) and F3411-
19 (US) [5], [3]. Both standards will require drones to broad-
cast drone and pilot location, the drone’s trajectory, and its
identification number. The standards foresee using either Blue-
tooth advertisements or WiFi Neighborhood-Aware-Network
features and, by requirement, they will operate without any
kind of encryption. These standards are to be introduced on a
mandatory basis from mid-2023 in Europe and on September
16, 2023, in the US. Contrary to DJI’s proprietary solution,
every compatible smartphone will be able to receive these
broadcasts via WiFi or Bluetooth, albeit at a significantly lower
distance. Open implementations are already available as library
or Android application [48], [47].

Although we are aware of these upcoming standards, we
found it surprisingly difficult to identify what current drones—
where open standards do not yet apply—actually transmit
as part of their proprietary protocol. Our detailed analysis
confirms that DJI’s DroneID protocol transmits unencrypted
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information, such as the drone’s and the remote pilot’s po-
sition, while the official statements of DJI claimed that this
information is encrypted [30], [20]. DJI has corrected this
statement since then [31]. Regardless, we strongly believe that
such features should be transparently communicated to users
and be part of a security whitepaper, especially due to inherent
privacy risks related to a broadcast of the pilot’s location.

c) Active Attacker without Physical Access: Our anal-
ysis of DroneID represents a first step towards understanding
the communication protocols used by DJI drones. Given the
findings from our analysis, we believe that an active attacker
could inject their own DroneID packets to spoof the location
of a drone. However, this is beyond the scope of our work;
instead, we leave it as an interesting approach for future
research.

d) Data Integrity: With AeroScope, DJI sells tracking
equipment for drones and remote pilots; consequently, we
expected that the integrity of the GPS location data would
be enforced by some countermeasure. However, our analysis
reveals that GPS data can be trivially disabled or spoofed,
rendering the position data reported by these systems to
authorities questionable and non-actionable. A proper integrity
protection should be enforced on all devices.

e) Applicability to Other Vendors: Although we have
focused on drones manufactured by DJI in this paper, there
are other vendors on the market (e. g., Autel with a market
share of 7% [58]). Given their comparably low adoption
and the fact that, to the best of our knowledge, no public
documentation regarding security and safety measures exists,
they are less interesting targets for analysis. Regardless, our
principled approach can be applied to other drones: Their
hardware, firmware, and software can be analyzed both stati-
cally and dynamically, as well as their wireless physical layer.
Depending on the protocols used, it may be worthwhile to
adapt our fuzzing approach, potentially with a UI oracle similar
to our method. As DroneID is unique to DJI, we do not expect
interesting results in this direction with respect to other drone
vendors, but other proprietary protocols could be worthwhile
targets.

f) Ethical Considerations and Research Artifacts:
Drones, by their very nature, raise a number of ethical and
moral considerations, especially when considering their misuse
in conflicts or their potential use as surveillance devices.
We have attempted to avoid discussing these facets in our
work, instead focusing on a technical analysis of security and
privacy aspects. We argue that regardless of who uses a drone,
it should adhere to the security standards promised by the
vendor and ensure that the integrity of the countermeasures
is not compromised. We responsibly shared the identified
vulnerabilities in a coordinated way. Furthermore, we plan
to publish all research artifacts related to this work once the
vulnerabilities have been fixed.

g) Lessons Learned: To further support future re-
search, we outline the procedural and methodological lessons
learned with regard to analyzing drones. In particular, we
would like to emphasize the importance of a holistic, in-
terdisciplinary analysis of firmware, signal processing, and
RF signal reverse engineering. This is a necessity to gain
deeper insights and understanding of the drone as a system.

Focusing only on a single aspect results in limited context
and hinders applicability of potential findings. For example, to
receive the final decoded DroneID information, the underlying
byte structure has to be known. This structure can only be
uncovered by reverse engineering the firmware. Combining the
analysis of both allows to recover the protocol structure and
thereby decode the packets.

Similarly, we strongly recommend combining different
techniques: While fuzzing proved fruitful to uncover various
software faults, it required a strong understanding of the
DUML protocol to have a reasonable target for the fuzzer.
Random inputs sent to a drone are highly unlikely to resemble
an actual packet and thus discarded immediately by the drone.
In the same vein, crashing the drone or observing differing UI
behavior requires manual static analysis to uncover the impact
and implications of the finding. In our case, the fuzzer managed
to change the WiFi SSID – manually investigating this odd
behavior allowed us to discover that this enables arbitrary code
execution on the drone. On the contrary, without running a
fuzzer we would not have detected most of the vulnerabilities
given the huge amount of possible DUML commands and their
complex interactions with different system components.

Finally, analyzing complex, unknown, closed-source tar-
gets such as drones is currently impossible without manual
analysis. No tool or technique is adequate to automatically
reverse engineer and “understand” the complexity posed by
drones that expose different hardware components, firmware,
and communication protocols. Still, as our fuzzer shows, once
a basic understanding is obtained, known techniques can be
adapted and ported forward to automate parts of the analysis.

In summary, our lessons learned are that analyzing complex
systems such as drones requires (1) holistic, interdisciplinary
research that (2) uses multiple analysis techniques but also
employs (3) manual work where appropriate.

VI. RELATED WORK

Our work focuses on several different system levels, and
we briefly review how it relates to previous work below.

a) Drone Research: Previous research addressing
drone security mostly dealt with aspects such as Denial
of Service (DoS), GPS spoofing [1], de-authentication at-
tacks [10], [49], [46], or identifying privacy invasion attacks
by drones [42], [7]. For an excellent overview of different
targets of drones, attack methods, and countermeasures used,
we refer the interested reader to the work by Nassi et al. [43].
However, there is little work so far that addresses system
security aspects. For example, fuzzing has only been used
to find vulnerabilities in (open source) protocols [21] or to
test open ports in WiFi-controlled drones [54]. In contrast, our
work analyzes the hardened software that powers DJI drones,
and we presented a custom fuzzing approach that takes drone-
specific requirements into account. Other research proposes
spectrum analysis using an SDR to evaluate the security of
the link between drones and RC [57]. We also use an SDR to
receive the proprietary DroneID packets so that we can reverse-
engineer them.

Note that most current research targets low-cost drones,
which typically offer fewer interfaces to control and often
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employ open-source software and protocols, making them less
interesting targets. Nevertheless, there are some prior works
that analyze DJI products: For example, one security analysis
examines the DJI Go 4 app [63], while others investigate the
Phantom 3 [65], [6] or Phantom 4 [16]. These analyses are
rather basic, focus only on a particular drone, and make no
attempt to assess the security of the full system.

b) Fuzzing: In the field of fuzzing, there is already a
large body of work, e. g., grey-box fuzzers like AFL [68] and
its derivatives [8], [24], [25], [9], which, despite their supposed
simplicity, have found a large number of different bugs in all
kinds of software. From this line of research, a multitude of
different techniques emerged. Until recently, most techniques
have focused on improving the bug-finding capabilities by
using more involved techniques. Among these techniques, the
most frequently used ones are symbolic execution [66], [61],
[11] and taint tracking [13], which use SMT solvers and data
flow analyses to improve the fuzzers’ performance.

However, most of these techniques assume the existence
of an operating system that provides the fuzzers with a
unified interface to the target under test. To overcome this
limitation, a considerable effort was made to apply “classic”
fuzzing techniques to targets that do not provide a unified
interface, such as embedded systems with virtually unlimited
configurations. While some approaches propose to fuzz on the
devices themselves [32], [67], it quickly became apparent that
emulation of (parts of) the embedded system during fuzzing
is required to make testing of such systems scalable. This
so-called re-hosting, i. e., executing (parts of) the firmware
inside an emulation environment [55], [23], [26], is currently
considered state of the art in this area. Due to the complex
interaction of a drone and the RC, we cannot use such
techniques but developed a custom fuzzing engine that takes
reverse engineering results related to the DUML protocol into
account.

Two recent works, IOTFUZZER [12] and DIANE [51],
also use smartphone apps to benefit fuzzing. Similar to our
work, the insight is that the smartphone app associated with
a device allows to gain insights on the device itself. In
the case of IOTFUZZER, Chen et al. extract information on
the protocol used to communicate with the device, allowing
them to generate effective fuzzing inputs without having to
manually specify a protocol. Redini et al. observe that these
apps often sanitize inputs, limiting IOTFUZZER’s approach of
generating inputs to producing valid inputs. They overcome
this by extracting code locations to produce valid but under-
constrained inputs. In contrast, our approach does not utilize
the app to extract information useful for input generation, but
instead uses the smartphone app as a bug oracle, allowing us
to detect subtle, non-crashing problems.

VII. CONCLUSION

In this paper, we analyzed the security and privacy of mod-
ern drones from the market leader DJI. We gave an overview
of the attack surface of drones and considered two attacker
models: A passive attacker without physical access, who is
capable of eavesdropping on the drones’ over-the-air traffic,
and an active attacker who has physical access to the drones’
hardware. Reverse engineering the proprietary DroneID pack-
ets from DJI’s tracking protocol, we found that this protocol

broadcasts the drone’s position, its home point, and the location
of the operator. On the other hand, we uncovered how to
disable DroneID or spoof the transmitted location, rendering
its reliability for law enforcement questionable. Assuming an
active attacker, we devised a fuzzer with a new UI oracle, both
tailored specifically to DJI drones, that uncovered multiple
critical security vulnerabilities in three different DJI devices. A
closer examination of the bugs revealed that our findings can
be used to execute arbitrary code or change the serial number
of the device, which was presumed immutable. Furthermore,
we found out that an attacker can crash the drone mid-flight
by sending the payload remotely over-the-air.

ACKNOWLEDGEMENTS

We would like to thank our shepherd Daniele Antonioli
and our anonymous reviewers for their valuable comments
and suggestions. We also thank Daniel Klischies for his
feedback. Furthermore, we would like to thank DJI for the
cooperative responsible disclosure process and swiftly fixing
reported vulnerabilities. This work was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy – EXC 2092 CASA –
390781972 and by the German Federal Ministry of Education
and Research (BMBF, projects CPSec – 16KIS1564K and
KMU-Fuzz – 16KIS1523).

REFERENCES

[1] J. Aru Saputro, E. Egistian Hartadi, and M. Syahral, “Implementation of
GPS Attacks on DJI Phantom 3 Standard Drone as a Security Vulner-
ability Test,” in International Conference on Information Technology,
Advanced Mechanical and Electrical Engineering (ICITAMEE), 2020.

[2] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“RedQueen: Fuzzing with Input-to-State Correspondence,” in Sympo-
sium on Network and Distributed System Security (NDSS), 2019.

[3] ASD-STAN, “ASD-STAN prEN 4709-002 P1,” https://asd-stan.org/
downloads/asd-stan-pren-4709-002-p1/.

[4] B. Association, “Buildroot Making Embedded Linux Easy,” https:
//buildroot.org/.

[5] ASTM, “Standard Specification for Remote ID and Tracking,” https:
//www.astm.org/f3411-19.html.

[6] T. E. A. Barton and M. A. H. B. Azhar, “Forensic analysis of popular
UAV systems,” in International Conference on Emerging Security
Technologies (EST), 2017.

[7] R. Ben Netanel, B. Nassi, A. Shamir, and Y. Elovici, “Detecting Spying
Drones,” IEEE Security & Privacy, vol. 19, no. 1, pp. 65–73, 2021.
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APPENDIX

Fig. 11. The 3D printed PCB workstation with a fixed DJI Mini 2, for
examining the PCB test pads.

Fig. 12. An arbitrary serial number of the flight controller, displayed by the
DJI Fly App.

# -------- drone_info_s struc ; sizeof=0x5b
#1 00000000 len_pack byte
#1 00000001 zero_byte byte
#1 00000002 version byte
#2 00000003 sequence_num unsigned short
#2 00000005 state_info unsigned short
#16 00000007 serial_num char[16]
#4 00000017 longitude int
#4 0000001b latitude int
#2 0000001f altitude short
#2 00000021 height short
#2 00000023 v_north short
#2 00000025 v_east short
#2 00000027 v_up short
#2 00000029 yaw short
#8 0000002b gps_time unsigned long long
#4 00000033 rc_latitude int
#4 00000037 rc_longitude int
#4 0000003b home_longitude int
#4 0000003f home_latitude int
#1 00000043 device_type byte
#1 00000044 uuid_len byte
#20 00000045 uuid char[20]
#2 00000059 crc unsigned short

Fig. 13. The structure of a DroneID packet

// Header
Magic: packet[0] = 0x55

pktlen = len(packet)
Length packet[1] = (pktlen + 2) & 0xff
Version packet[2] = (((pktlen + 2) >> 8 & 0x03) | 0x04)
CRC8 packet[3] = calc8([Magic, Length, Version])

// Transit
SrcID packet[4] = (0 & 31) | ((sender_index & 7) << 5)
SrcType packet[4] = (packet[4] & 0xe0) | (sender_type & 31)
DestID packet[5] = (0 & 31) | ((receiver_index & 7) << 5)
DestType packet[5] = (packet[5] & 0xe0) | (receiver_type & 31)

Counter seqno = randrange(0,32767)
packet[6] = seqno & 0xff
packet[7] = (seqno >> 8) & 0xff

// Command
cmdType packet[8] = (0 & 127) | ((packet_type & 1) << 7)
ackType packet[8] = (packet[8] & 159) | ((ack_type & 3) << 5)
Encrypt packet[8] = (packet[8] & 248) | (enc_type & 7)
cmdSet packet[9] = cmd_set
cmdID packet[10] = cmd_id

// PL & CRC
Payload packet[11:len(payload)]payload
CRC16 crc16 = calc16(packet)

crc[0] = crc16 & 0xff
crc[1] = (crc16 >> 8) & 0xff
packet = packet + crc

Fig. 14. Calculation of the different fields of a DUML command

// Header
Magic: packet[0]
Length packet[1] | ((packet[2] & 0x03) << 8)
Version packet[2] >> 2
CRC8 packet[3]

// Transit
SrcID (packet[4] & 0xe0) >> 5
SrcType packet[4] & 31
DestID (packet[5] & 0xe0) >> 5
DestType packet[5] & 31
Counter ((packet[7] & 0xFF) << 8) | packet[6] & 0xFF

// Command
cmdType packet[8] >> 7
ackType packet[8] >> 5 & 3
Encrypt packet[8] & 7
cmdSet packet[9]
cmdID packet[10]

// PL & CRC
Payload packet[11:pktlen-2]
CRC16 [packet[-1], packet[-2]]

Fig. 15. Parsing of the different fields of a DUML command
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